Joint conference of AsiaFlux Workshop 2017 and the 15th Anniversary Celebration of ChinaFLUX

August 17-19, 2017 Beijing, China

Interannual variability of ecosystem carbon exchange: from observation to prediction

Shuli Niu (牛书丽), Zheng Fu, Yiqi Luo, Paul C. Stoy, Trevor F. Keenan, Benjamin Poulter, Leiming Zhang, Shilong Piao, Xuhui Zhou, Han Zheng, Jiayin Han, Qiufeng Wang, Guirui Yu

Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences

Aug 18, 2017

Atmosphereic CO₂ concentration

IAV of atmosphereic CO₂ growth rate

Ballantyne et al. 2012 Nature

IAV of land C uptake dominates the IAV of atmospheric CO₂ growth rate

Global Carbon Budget 2015

Causes of land C IAV: tropical temperature

Wang et al. 2013 PNAS

Causes of land C IAV: precipitation in semiarid area

Scale matters! Explained the paradox?

Jung et al. 2017 Nature

Model prediction of IAV of land C cycle

Site scale model performanceterrible!

None of the models fell within measurement uncertainty

Due to the difficulties in reproducing biogeochemical mechanisms: phenology, lagged response...

Keenan et al. 2012. GCB

What are the key biogeochemical mechanisms underlying the IAV of ecosystem NEE?

IAV of NEE- fluxnet sites

Fu et al. 2017. AFM

No significant correlation between IAV of NEP and anomalies of climate factors

Conceptual diagram

Possible mechanisms

Ultimate causes of IAV of NEP: climate factors: T, PPT, Rg ... Proximate causes of IAV of NEP: biogeochemical regulations Fu et al. 2017. ERL

Quantify the key processes

Fu et al. 2017. ERL

IAV of NEP and the determinants

Niu et al. 2017. in revision

IAV of NEP vs. IAV of CUA and CUP

Niu et al. 2017. in revision

Relative importance of the two processes

Niu et al. 2017. in revision

IAV of CUP vs. IAV of BDOY or EDOY

Autumn phenology played more important role than spring phenology in controlling IAV of CUP.

Fu et al. 2017. AFM

Climate variables did not directly but indirectly affect IAV of NEE via biogeochemical regulations

Fu et al. 2017. AFM

Global scale?

IAV of global land NEE

Fu et al. 2017. ERL

IAV of global NEE vs. CUA, CUP

Different vegetation types?

Fu et al. 2017. ERL

IAV of global NEE vs CUA, CUP

Fu et al. 2017. ERL

IAV of NEE was largely due to IAV of GPP

Fu et al. in preparation

IAV of MODIS-GPP and its attributions to CUP and CUA

Specified conceptual diagram

Where we are standing and where should we go?

	Global	Regional	Ecosystem
Phenomena	Variation in yearly growth rate of atmospheric CO ₂ concentration	Yearly anomalies of regional NEE under heat waves, large-scale drought, and fires	Yearly variation in NEE observed by eddy-flux towers, NPP from long-term ecological research sites, tree rings.
Driving factors	Primarily anomalies of temperature	Anomalies of both temperature and precipitation, with varying roles in different regions.	Temperature, precipitation, radiation, and disturbances play different roles in different ecosystems.
Biological mechanism or attributes	Attribute to different regions, among which tropical and semi-arid areas contribute most.	Not well examined yet	Differential climate sensitivity of photosynthesis vs. respiration. Carbon uptake amplitude plays more important role than carbon uptake period
Model predictive skill	No mechanistic models yet tested except some statistical models	Land models used to examine IAV in different regions	Models perform poorly, mainly due to a lack of model calibration of phenological and physiological responses, and lag mechanisms
Recommendation for future research	Explore which regions contribute most to the global IAV, and how these contributions are changing in a changing climate	Reveal the drivers and causes of IAV of NEE in different regions	Promote long-term observations especially in less-studied areas. Better understand biological mechanisms. Use data-model fusion approaches to improve model prediction.

Thanks for your attention!

Questions? sniu@igsnrr.ac.cn

Summary

IAV of NEE largely explained by CUA and CUP

The maximum NEP plays major role in controlling IAV of C fluxes

Climate variables indirectly affect IAV of NEE via their influences on the biogeochemical regulations.

Causes of land C IAV: radiation

Nemani et al. 2003 Science

Ichii et al. 2005 GPC